Beyond bounded width and few subpowers

Miklós Maróti
Bolyai Institute, University of Szeged, Hungary
Toronto, 2011. August 3.

Two powerful algorithms

Constraint Satisfaction Problem

Definition

Template: a finite set \mathcal{B} of similar finite idempotent algebras closed under taking subuniverses.

Definition

Binary instance: a set

$$
\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}
$$

of universes $\mathbf{B}_{i} \in \mathcal{B}$ and relations $\mathbf{R}_{i j} \leq \mathbf{B}_{i} \times \mathbf{B}_{j}$ indexed by variables in V, such that $R_{i i}=\left\{(b, b) \mid b \in B_{i}\right\}$ and $R_{i j}=R_{j i}^{-1}$.

Definition

Solution: a map $f \in \prod_{i \in V} B_{i}$ such that $(f(i), f(j)) \in R_{i j}$ for all $i, j \in V$.

Local Consistency Algorithm

Definition

An instance $\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}$ is

- (1,2)-consistent: if $R_{i j} \leq B_{i} \times B_{j}$ is subdirect
- (2, 3)-consistent: if $R_{i k} \subseteq R_{i j} \circ R_{j k}$ for all $i, j, k \in V$.

Theorem

Every instance \mathcal{A} can be turned into a (2,3)-consistent instance \mathcal{A}^{\prime} in polynomial time such that they have the same set of solutions.

Proof.

Reduce the instance until it becomes consistent:

$$
R_{i k}^{\prime}=R_{i k} \cap\left(R_{i j} \circ R_{j k}\right)
$$

Bounded Width Theorem

Theorem (Barto, Kozik)

If \mathcal{B} generates a congruence meet-semidistributive variety, then every nonempty (2, 3)-consistent instance has a solution.

Proof Overview.

- If $\left|B_{i}\right|=1$ for all $i \in V$, then this is a solution
- If the instance is nonempty and nontrivial, then find a smaller instance with the same consistency property
- We need absorbtion theory to get smaller instance
- Use new consistency: $(1,2)<$ Prague strategy $<(2,3)$

Few Subpowers Theorem

Definition

An algebra B has few subpowers, if there is a polynomial $p(n)$ such that $\left|S\left(\mathbf{P}^{n}\right)\right| \leq 2^{p(n)}$ for all integer n.

Theorem (Berman, Idziak, Marković, McKenzie, Valeriote, Willard)
An algebra B has few subpowers iff it has an edge term t

$$
\begin{aligned}
t(y, y, x, x, x, \ldots, x, x) & \approx x \\
t(x, y, y, x, x, \ldots, x, x) & \approx x \\
t(x, x, x, y, x, \ldots, x, x) & \approx x \\
\ddots & \vdots \\
t(x, x, x, x, x, \ldots, x, y) & \approx x .
\end{aligned}
$$

Edge Term Algorithm

Definition

A compact representation of a subuniverse $\mathbf{S} \leq \prod_{i \in V} \mathbf{B}_{i}$ is

- a subset $T \subseteq S$ that generates \mathbf{S} and is small $|T| \leq p(|V|)$,
- every "minority fork" and "small projection" is represented

Theorem (Idziak, Marković, McKenzie, Valeriote, Willard)

If the variety generated by \mathcal{B} has an edge term, then the compact representation of the solution set is computable in polynomial time.

Proof Overview.

- Take the compact representation of $\prod_{i \in V} \mathbf{B}_{i}$.
- From the compact representation of \mathbf{S} and $\mathbf{R}_{i j} \leq \mathbf{B}_{i} \times \mathbf{B}_{j}$ compute the compact representation of

$$
\mathbf{S}^{\prime}=\left\{f \in S \mid(f(i), f(j)) \in R_{i j}\right\} .
$$

Maltsev on Top

Maltsev on Top Algorithm

Theorem (Maróti)

Suppose, that each algebra $\mathbf{B} \in \mathcal{B}$ has a congruence $\beta \in \operatorname{Con}(\mathbf{B})$ such that \mathbf{B} / β has few subpowers and each β block has bounded width. Then we can solve the constraint satisfaction problem over \mathcal{B} in polynomial time.

Proof Overview.

- Take an instance $\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}$ and $\beta_{i} \in \operatorname{Con}\left(\mathbf{B}_{i}\right)$
- Consider extended constraints that not only limit the projection of the solution set to the $\{i, j\}$ coordinates, but also to $\prod_{v \in V} \mathbf{B}_{v} / \beta_{v}$
- Use extended $(2,3)$-consistency algorithm
- Obtain a solution modulo the β congruences so that the restriction of the problem to the selected congruence blocks is $(2,3)$-consistent.
- By the bounded width theorem there exists a solution.

Edge Term Observations

Lemma

Given the compact representations of subproducts \mathbf{S} and \mathbf{P} over \mathcal{B}, then the compact representations of $\mathbf{S} \times \mathbf{P}$ and $\mathbf{S} \cap \mathbf{P}$ can be computed in polynomial time.

Lemma

Given the compact representations of $\mathbf{S}_{1}, \ldots, \mathbf{S}_{k}$ and assume that $\mathbf{S}=\bigcup_{i=1}^{k} \mathbf{S}_{i}$ is a subuniverse, then the compact representation of \mathbf{S} can be computed in polynomial time.

Corollary

Given the compact representations of a set \mathcal{R} of subproducts over \mathcal{B}, then the compact representation of any subproduct defined by a primitive positive formula over \mathcal{R} can be computed in polynomial time.

Extended Constraints

Definition

An extended instance is $\mathcal{E}=\left\{\mathbf{B}_{i}, \mathbf{S}_{i j} \mid i, j \in V\right\}$ where

- $\mathbf{S}_{i j} \leq \mathbf{B}_{i} \times \mathbf{B}_{j} \times \prod_{v \in V} \mathbf{B}_{v} / \beta_{v}$,
- if $(x, y, \bar{u}) \in S_{i j}$ then $x / \beta_{i}=u_{i}$ and $y / \beta_{j}=u_{j}$,
- if $(x, y, \bar{u}) \in S_{i i}$ then $x=y$, and
- $(x, y, \bar{u}) \in S_{i j}$ if and only if $(y, x, \bar{u}) \in S_{j i}$.

A map $f \in \prod_{v \in V} B_{v}$ is a solution if for all $i, j \in V$

$$
\left(f(i), f(j), f(v) / \beta_{v}: v \in V\right) \in S_{i j}
$$

Definition

The extended instance \mathcal{E} is $(2,3)$-consistent if

$$
S_{i k} \subseteq \underbrace{\left\{(x, z, \bar{u}) \mid \exists y \in B_{j} \text { such that }(x, y, \bar{u}) \in S_{i j},(y, z, \bar{u}) \in S_{j k}\right\}}_{S_{i j} \circ S_{j k}}
$$

Extended Consistency Algorithm

Lemma

Every instance $\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}$ can be turned into a (2,3)-consistent extended instance $\mathcal{E}=\left\{\mathbf{B}_{i}, \mathbf{S}_{i j} \mid i, j \in V\right\}$ in polynomial time such that they have the same set of solutions.

Proof Overview.

- Start with $\mathbf{S}_{i j}=\left\{(x, y, \bar{u}) \mid(x, y) \in R_{i, j}, x / \beta_{i}=u_{i}, y / \beta_{j}=u_{j}\right\}$
- $\mathbf{S}_{i j}$ has a compact representation (one for each $(x, y) \in B_{i} \times B_{j}$)
- If \mathcal{E} is not $(2,3)$-consistent, then take $S_{i k}^{\prime}=S_{i k} \cap\left(S_{i j} \circ S_{j k}\right)$
- Stops in polynomial time: the number of witnessed indices are decreasing

Lemma

If a (2, 3)-consistent extended instance is nonempty, then it has a solution.

Global Considerations

Lemma (McKenzie)

If two finite algebras generate $\mathrm{SD}(\wedge)$ varietes (or varieties with edge terms), then the variety generated by their product has the same property.

Corollary

Let \mathcal{V} be an idempotent variety generated by finite algebras, each of which has either bounded width or few subpowers. Then for each template $\mathcal{B} \subset \mathcal{V}$ the constraint satisfaction problem is solvable in polynomial time.

Problem

Given compact representations of relations \mathbf{S} and \mathbf{P} in the few subpower case, is it possible to find the compact representation of $\operatorname{Sg}(S \cup P)$?

Problem

What goes wrong, if the quotient \mathbf{B} / β has bounded width?

Consistent Maps

Consistent Maps

Definition

Let $\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}$ be a binary instance. A collection of maps

$$
\mathcal{P}=\left\{p_{i}: B_{i} \rightarrow B_{i} \mid i \in V\right\}
$$

is consistent, if $p_{i} \times p_{j}$ preserves $\mathbf{R}_{i j}$ for all $i, j \in V$, i.e.

$$
(a, b) \in \mathbf{R}_{i j} \Longrightarrow\left(p_{i}(a), p_{j}(b)\right) \in \mathbf{R}_{i j}
$$

- The identity maps $p_{i}(x)=x$ are always consistent.
- If f is a solution, then the constant maps $p_{i}(x)=f(i)$ are consistent.
- Consistent maps map solutions to solutions.
- Consistent sets of maps can be composed pointwise.

Using Consistent Maps

Definition

A consistent set $\mathcal{P}=\left\{p_{i} \mid i \in V\right\}$ of maps is

- idempotent if $p_{i}\left(p_{i}(x)\right)=p_{i}(x)$,
- permutational if $p_{i}(x)$ is a permutation of \mathbf{B}_{i}, for all $i \in V$.

Lemma

Let \mathcal{P} be a non-permutational consistent set of maps for an instance \mathcal{A}. Then a smaller instance \mathcal{A}^{\prime} can be constructed in polynomial time such that \mathcal{A} has a solution if and only if \mathcal{A}^{\prime} does.

- Consistent sets of maps can be iterated to get idempotency.
- Take idempotent images of the universes and relations (this is smaller)
- Larger instance has a solution if and only if the smaller does.
- We step outside of the variety (we use an idempotent image of an algebra), but linear equations are preserved.

Finding Consistent Maps

Lemma

Let $\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}$ be a binary instance. A collection of maps $\mathcal{P}=\left\{p_{i} \mid i \in V\right\}$ is consistent if and only if the binary instance \mathcal{A}^{\prime} with

- variables $V^{\prime}=\left\{(i, a) \mid i \in V, a \in B_{i}\right\}$, domains $\mathbf{B}_{i a}^{\prime}=\mathbf{B}_{i}$, and
- relations

$$
\mathbf{R}_{i a j b}^{\prime}= \begin{cases}\mathbf{R}_{i j}, & \text { if }(a, b) \in \mathbf{R}_{i j} \\ \mathbf{B}_{i} \times \mathbf{B}_{j}, & \text { otherwise }\end{cases}
$$

has the function $f^{\prime}(i a)=p_{i}(a)$ as a solution.

Lemma

For any binary term $t(x, y)$ and a solution f of the binary instance \mathcal{A} the maps

$$
\mathcal{P}=\left\{p_{i} \mid i \in V\right\}, \quad p_{i}(x)=t(x, f(i))
$$

are consistent.

Elimination Theorem

Definition

A template is a finite set \mathcal{B} of idempotent algebras closed under taking subalgebras and idempotent images. We say that an algebra \mathbf{B} can be eliminated if $\operatorname{CSP}(\mathcal{B})$ is tractable for all templates \mathcal{B} for which $\mathcal{B} \backslash\{\mathbf{B}\}$ is also a template and $\operatorname{CSP}(\mathcal{B} \backslash\{\mathbf{B}\})$ is tractable.

Theorem (Maróti)

Let \mathbf{B} be an algebra and $t(x, y)$ be a binary term such that the unary maps $y \mapsto t(a, y), a \in B$, are idempotent and not surjective. Let C be the set of elements $c \in B$ for which $x \mapsto t(x, c)$ is a permutation. If C generates a proper subuniverse of \mathbf{B}, then \mathbf{B} can be eliminated.

Proof of Elimination Theorem

- Take a template \mathcal{B}, an algebra $\mathbf{B} \in \mathcal{B}$ such that $\mathcal{B} \backslash\{\mathbf{B}\}$ is also a template, and an instance $\mathcal{A}=\left\{\mathbf{B}_{i}, \mathbf{R}_{i j} \mid i, j \in V\right\}$.
- First check if there is a solution f for which $f(i) \in \operatorname{Sg}(C)$ for all $i \in V$ for which $\mathbf{B}_{i}=\mathbf{B}$. This is a smaller instance.
- If we have a solution, then we are done. Otherwise if there exists a solution f at all, then we have a consistent set of maps of the form $p_{i}(x)=t(x, f(i))$ which is not permutational.
- We find a non-permutational consistent set of maps for which $p_{i}(a) \in t\left(a, B_{i}\right)=\left\{t(a, y) \mid y \in B_{i}\right\}$ for all $(i, a) \in V^{\prime}$.
- The maps $y \mapsto t(a, y)$ are idempotent and not surjective, so in our instance we can take $\mathbf{B}_{i a}^{\prime}=t\left(a, B_{i}\right)$.
- For each choice of $i \in V, a, b \in B_{i}$ we create an instance $\mathcal{A}_{i a b}^{\prime}$ with an extra equality constraint between the variables (i, a) and (i, b).
- These are a smaller instances that we can solve. If one of them has a solution, then it is non-permutational, and we can reduce \mathcal{A}.
- Otherwise \mathcal{A} has no solution.

Applications

Lemma

Let \mathbf{B} be a finite idempotent algebra, $\beta \in \operatorname{Con}(\mathbf{B})$ such that \mathbf{B} / β is a semilattice (with extra operations) having more than one maximal elements. Then B can be eliminated.

Proof.

Take a binary term t of \mathbf{B} that is the semilattice term on \mathbf{B} / β. We can iterate, so we can assume that $t(x, t(x, y))=t(x, y)$. Now the maps $x \mapsto t(x, b)$ and $y \mapsto t(a, y)$ are not permutations, so we can apply the elimination theorem.

Corollary (Using Marković, McKenzie)

Let \mathcal{B} be a template and assume that each algebra $\mathbf{B} \in \mathcal{B}$ has a congruence $\beta \in \operatorname{Con}(\mathbf{B})$ such that \mathbf{B} / β is a semilattice with a rooted tree order, and each β block is Maltsev. Then $\operatorname{CSP}(\mathcal{B})$ can be solved in polynomial time.

Applications Cont.

```
Theorem (Bulatov)
If |\mathbf{B}|=3\mathrm{ and }\mathbf{B}\mathrm{ has a Taylor term, then }\operatorname{CSP}(\mathbf{B})\mathrm{ is tractable.}
```

```
Theorem (Marković)
If |\mathbf{B}|=4\mathrm{ and 要 has a Taylor term, then }\operatorname{CSP(B) is tractable.}
```


Theorem (Bulatov)

If \mathbf{B} is conservative (every subset is a subuniverse) and has a Taylor term, then $\operatorname{CSP}(\mathbf{B})$ is tractable.

Problem

Can you avoid the condition $\operatorname{Sg}(C) \neq B$ in the elimination theorem?

Thank you!

