Beyond bounded width and few subpowers

Miklós Maróti

Bolyai Institute, University of Szeged, Hungary

Toronto, 2011. August 3.

Two powerful algorithms

Constraint Satisfaction Problem

Definition

Template: a finite set \mathcal{B} of similar finite idempotent algebras closed under taking subuniverses.

Definition

Binary instance: a set

$$\mathcal{A} = \{ \mathbf{B}_i, \mathbf{R}_{ij} \mid i, j \in V \}$$

of universes $\mathbf{B}_i \in \mathcal{B}$ and relations $\mathbf{R}_{ij} \leq \mathbf{B}_i \times \mathbf{B}_j$ indexed by variables in V, such that $R_{ii} = \{ (b,b) \mid b \in B_i \}$ and $R_{ij} = R_{ii}^{-1}$.

Definition

Solution: a map $f \in \prod_{i \in V} B_i$ such that $(f(i), f(j)) \in R_{ij}$ for all $i, j \in V$.

Local Consistency Algorithm

Definition

An instance $A = \{ \mathbf{B}_i, \mathbf{R}_{ij} \mid i, j \in V \}$ is

- (1,2)-consistent: if $R_{ij} \leq B_i \times B_j$ is subdirect
- (2,3)-consistent: if $R_{ik} \subseteq R_{ij} \circ R_{jk}$

for all $i, j, k \in V$.

Theorem

Every instance A can be turned into a (2,3)-consistent instance A' in polynomial time such that they have the same set of solutions.

Proof.

Reduce the instance until it becomes consistent:

$$R'_{ik} = R_{ik} \cap (R_{ij} \circ R_{jk}).$$

Bounded Width Theorem

Theorem (Barto, Kozik)

If \mathcal{B} generates a congruence meet-semidistributive variety, then every nonempty (2,3)-consistent instance has a solution.

Proof Overview.

- If $|B_i| = 1$ for all $i \in V$, then this is a solution
- If the instance is nonempty and nontrivial, then find a smaller instance with the same consistency property
- We need absorbtion theory to get smaller instance
- Use new consistency: (1,2) < Prague strategy < (2,3)

Few Subpowers Theorem

Definition

An algebra **B** has **few subpowers**, if there is a polynomial p(n) such that $|S(\mathbf{P}^n)| \leq 2^{p(n)}$ for all integer n.

Theorem (Berman, Idziak, Marković, McKenzie, Valeriote, Willard)

An algebra **B** has few subpowers iff it has an **edge term** t

$$t(y, y, x, x, x, \dots, x, x) \approx x$$

 $t(x, y, y, x, x, \dots, x, x) \approx x$
 $t(x, x, x, y, x, \dots, x, x) \approx x$
 \vdots
 $t(x, x, x, x, x, x, \dots, x, y) \approx x$.

Edge Term Algorithm

Definition

A **compact representation** of a subuniverse $S \subseteq \prod_{i \in V} B_i$ is

- a subset $T \subseteq S$ that generates **S** and is small $|T| \le p(|V|)$,
- every "minority fork" and "small projection" is represented

Theorem (Idziak, Marković, McKenzie, Valeriote, Willard)

If the variety generated by $\mathcal B$ has an edge term, then the compact representation of the solution set is computable in polynomial time.

Proof Overview.

- Take the compact representation of $\prod_{i \in V} \mathbf{B}_i$.
- From the compact representation of **S** and $\mathbf{R}_{ij} \leq \mathbf{B}_i \times \mathbf{B}_j$ compute the compact representation of

$$S' = \{ f \in S \mid (f(i), f(j)) \in R_{ij} \}.$$

Maltsev on Top

Maltsev on Top Algorithm

Theorem (Maróti)

Suppose, that each algebra $\mathbf{B} \in \mathcal{B}$ has a congruence $\beta \in \operatorname{Con}(\mathbf{B})$ such that \mathbf{B}/β has few subpowers and each β block has bounded width. Then we can solve the constraint satisfaction problem over \mathcal{B} in polynomial time.

Proof Overview.

- Take an instance $A = \{ \mathbf{B}_i, \mathbf{R}_{ij} \mid i, j \in V \}$ and $\beta_i \in \operatorname{Con}(\mathbf{B}_i)$
- Consider **extended constraints** that not only limit the projection of the solution set to the $\{i,j\}$ coordinates, but also to $\prod_{v \in V} \mathbf{B}_v / \beta_v$
- Use extended (2,3)-consistency algorithm
- Obtain a solution modulo the β congruences so that the restriction of the problem to the selected congruence blocks is (2,3)-consistent.
- By the bounded width theorem there exists a solution.

Edge Term Observations

Lemma

Given the compact representations of subproducts S and P over \mathcal{B} , then the compact representations of $S \times P$ and $S \cap P$ can be computed in polynomial time.

Lemma

Given the compact representations of S_1, \ldots, S_k and assume that $S = \bigcup_{i=1}^k S_i$ is a subuniverse, then the compact representation of S can be computed in polynomial time.

Corollary

Given the compact representations of a set $\mathcal R$ of subproducts over $\mathcal B$, then the compact representation of any subproduct defined by a primitive positive formula over $\mathcal R$ can be computed in polynomial time.

Extended Constraints

Definition

An **extended instance** is $\mathcal{E} = \{\mathbf{B}_i, \mathbf{S}_{ij} \mid i, j \in V\}$ where

- $S_{ij} \leq B_i \times B_j \times \prod_{v \in V} B_v / \beta_v$,
- if $(x, y, \bar{u}) \in S_{ij}$ then $x/\beta_i = u_i$ and $y/\beta_j = u_j$,
- if $(x, y, \bar{u}) \in S_{ii}$ then x = y, and
- $(x, y, \bar{u}) \in S_{ij}$ if and only if $(y, x, \bar{u}) \in S_{ji}$.

A map $f \in \prod_{v \in V} B_v$ is a **solution** if for all $i, j \in V$

$$(f(i), f(j), f(v)/\beta_v : v \in V) \in S_{ij}.$$

Definition

The extended instance \mathcal{E} is (2,3)-consistent if

$$S_{ik} \subseteq \underbrace{\{(x,z,\overline{u}) \mid \exists y \in B_j \text{ such that } (x,y,\overline{u}) \in S_{ij}, (y,z,\overline{u}) \in S_{jk}\}}_{S_{ij} \circ S_{jk}}$$

Extended Consistency Algorithm

Lemma

Every instance $\mathcal{A} = \{ \mathbf{B}_i, \mathbf{R}_{ij} \mid i, j \in V \}$ can be turned into a (2,3)-consistent extended instance $\mathcal{E} = \{ \mathbf{B}_i, \mathbf{S}_{ij} \mid i, j \in V \}$ in polynomial time such that they have the same set of solutions.

Proof Overview.

- Start with $S_{ij} = \{ (x, y, \bar{u}) \mid (x, y) \in R_{i,j}, \ x/\beta_i = u_i, \ y/\beta_j = u_j \}$
- \mathbf{S}_{ij} has a compact representation (one for each $(x,y) \in B_i \times B_j$)
- ullet If ${\mathcal E}$ is not (2,3)-consistent, then take $S'_{ik}=S_{ik}\cap (S_{ij}\circ S_{jk})$
- Stops in polynomial time: the number of witnessed indices are decreasing

Lemma

If a (2,3)-consistent extended instance is nonempty, then it has a solution.

Global Considerations

Lemma (McKenzie)

If two finite algebras generate $\mathrm{SD}(\wedge)$ varieties (or varieties with edge terms), then the variety generated by their product has the same property.

Corollary

Let $\mathcal V$ be an idempotent variety generated by finite algebras, each of which has either bounded width or few subpowers. Then for each template $\mathcal B\subset \mathcal V$ the constraint satisfaction problem is solvable in polynomial time.

Problem

Given compact representations of relations **S** and **P** in the few subpower case, is it possible to find the compact representation of $Sg(S \cup P)$?

Problem

What goes wrong, if the quotient \mathbf{B}/β has bounded width?

Consistent Maps

Consistent Maps

Definition

Let $A = \{ B_i, R_{ij} \mid i, j \in V \}$ be a binary instance. A collection of maps

$$\mathcal{P} = \{ p_i : B_i \to B_i \mid i \in V \}$$

is **consistent**, if $p_i \times p_j$ preserves \mathbf{R}_{ij} for all $i, j \in V$, i.e.

$$(a,b) \in \mathbf{R}_{ij} \implies (p_i(a),p_i(b)) \in \mathbf{R}_{ij}.$$

- The identity maps $p_i(x) = x$ are always consistent.
- If f is a solution, then the constant maps $p_i(x) = f(i)$ are consistent.
- Consistent maps map solutions to solutions.
- Consistent sets of maps can be composed pointwise.

Using Consistent Maps

Definition

A consistent set $\mathcal{P} = \{ p_i \mid i \in V \}$ of maps is

- **idempotent** if $p_i(p_i(x)) = p_i(x)$,
- **permutational** if $p_i(x)$ is a permutation of \mathbf{B}_i , for all $i \in V$.

Lemma

Let \mathcal{P} be a non-permutational consistent set of maps for an instance \mathcal{A} . Then a smaller instance \mathcal{A}' can be constructed in polynomial time such that \mathcal{A} has a solution if and only if \mathcal{A}' does.

- Consistent sets of maps can be iterated to get idempotency.
- Take idempotent images of the universes and relations (this is smaller)
- Larger instance has a solution if and only if the smaller does.
- We step outside of the variety (we use an idempotent image of an algebra), but linear equations are preserved.

Finding Consistent Maps

Lemma

Let $A = \{ B_i, R_{ij} \mid i, j \in V \}$ be a binary instance. A collection of maps $\mathcal{P} = \{ p_i \mid i \in V \}$ is consistent if and only if the binary instance A' with

- variables $V' = \{ (i, a) \mid i \in V, a \in B_i \}$, domains $\mathbf{B}'_{ia} = \mathbf{B}_i$, and
- relations

$$\mathbf{R}'_{iajb} = egin{cases} \mathbf{R}_{ij}, & \textit{if } (a,b) \in \mathbf{R}_{ij}, \ \mathbf{B}_i imes \mathbf{B}_j, & \textit{otherwise} \end{cases}$$

has the function $f'(ia) = p_i(a)$ as a solution.

Lemma

For any binary term t(x,y) and a solution f of the binary instance $\mathcal A$ the maps

$$\mathcal{P} = \{ p_i \mid i \in V \}, \qquad p_i(x) = t(x, f(i))$$

are consistent.

Elimination Theorem

Definition

A **template** is a finite set $\mathcal B$ of idempotent algebras closed under taking subalgebras and idempotent images. We say that an algebra $\mathbf B$ can be **eliminated** if $\mathrm{CSP}(\mathcal B)$ is tractable for all templates $\mathcal B$ for which $\mathcal B\setminus\{\mathbf B\}$ is also a template and $\mathrm{CSP}(\mathcal B\setminus\{\mathbf B\})$ is tractable.

Theorem (Maróti)

Let **B** be an algebra and t(x,y) be a binary term such that the unary maps $y \mapsto t(a,y)$, $a \in B$, are idempotent and not surjective. Let C be the set of elements $c \in B$ for which $x \mapsto t(x,c)$ is a permutation. If C generates a proper subuniverse of **B**, then **B** can be eliminated.

Proof of Elimination Theorem

- Take a template \mathcal{B} , an algebra $\mathbf{B} \in \mathcal{B}$ such that $\mathcal{B} \setminus \{\mathbf{B}\}$ is also a template, and an instance $\mathcal{A} = \{\mathbf{B}_i, \mathbf{R}_{ij} \mid i, j \in V\}$.
- First check if there is a solution f for which $f(i) \in \operatorname{Sg}(C)$ for all $i \in V$ for which $\mathbf{B}_i = \mathbf{B}$. This is a smaller instance.
- If we have a solution, then we are done. Otherwise if there exists a solution f at all, then we have a consistent set of maps of the form $p_i(x) = t(x, f(i))$ which is not permutational.
- We find a non-permutational consistent set of maps for which $p_i(a) \in t(a, B_i) = \{ t(a, y) \mid y \in B_i \}$ for all $(i, a) \in V'$.
- The maps $y \mapsto t(a, y)$ are idempotent and not surjective, so in our instance we can take $\mathbf{B}'_{ia} = t(a, B_i)$.
- For each choice of $i \in V$, $a, b \in B_i$ we create an instance \mathcal{A}'_{iab} with an extra equality constraint between the variables (i, a) and (i, b).
- ullet These are a smaller instances that we can solve. If one of them has a solution, then it is non-permutational, and we can reduce ${\cal A}.$
- ullet Otherwise ${\cal A}$ has no solution.

Applications

Lemma

Let **B** be a finite idempotent algebra, $\beta \in \operatorname{Con}(\mathbf{B})$ such that \mathbf{B}/β is a semilattice (with extra operations) having more than one maximal elements. Then **B** can be eliminated.

Proof.

Take a binary term t of $\mathbf B$ that is the semilattice term on $\mathbf B/\beta$. We can iterate, so we can assume that t(x,t(x,y))=t(x,y). Now the maps $x\mapsto t(x,b)$ and $y\mapsto t(a,y)$ are not permutations, so we can apply the elimination theorem.

Corollary (Using Marković, McKenzie)

Let \mathcal{B} be a template and assume that each algebra $\mathbf{B} \in \mathcal{B}$ has a congruence $\beta \in \operatorname{Con}(\mathbf{B})$ such that \mathbf{B}/β is a semilattice with a rooted tree order, and each β block is Maltsev. Then $\operatorname{CSP}(\mathcal{B})$ can be solved in polynomial time.

Applications Cont.

Theorem (Bulatov)

If $|\mathbf{B}| = 3$ and \mathbf{B} has a Taylor term, then $CSP(\mathbf{B})$ is tractable.

Theorem (Marković)

If $|\mathbf{B}| = 4$ and \mathbf{B} has a Taylor term, then $CSP(\mathbf{B})$ is tractable.

Theorem (Bulatov)

If **B** is conservative (every subset is a subuniverse) and has a Taylor term, then CSP(B) is tractable.

Problem

Can you avoid the condition $Sg(C) \neq B$ in the elimination theorem?

Thank you!